General Info:

- OpenAI 2021
- Multimodal (Image → Text)
 - One of (if not) the first model
 - Late fusion approach
- (very) Good paper

Claimed Advantages (compare to ResNet-50 - CNN):

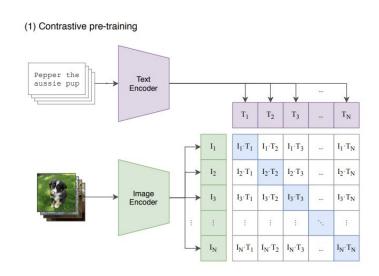
- Match ResNet50 performance
- + Generality zero-shot 30 different datasets
- + Scalability

• Dataset:

- WebImageNet (WIT): open-source internet-search with queries 400Mil
- Reference ImageNet has ~15Mil
- o Train from scratch

Architecture (for pretrain):

- Loss function for batch of N pairs:
 - CE log(cosine (dis)similarity of NxN)



1. Text representation

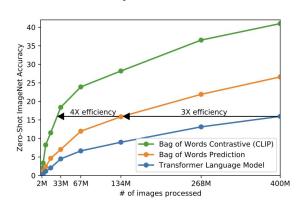
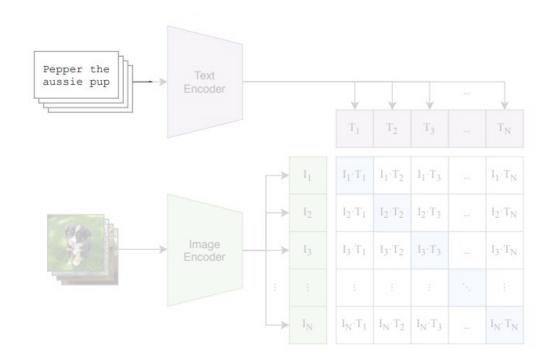
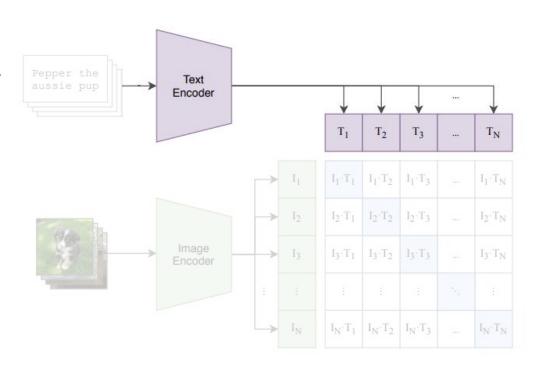


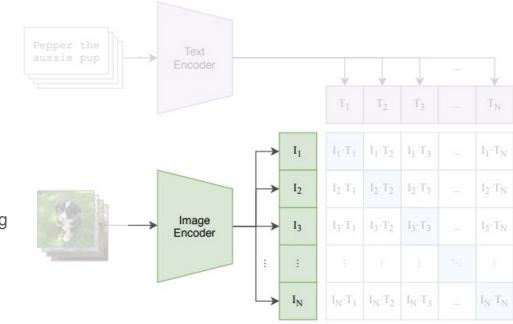
Figure 2. CLIP is much more efficient at zero-shot transfer than our image caption baseline. Although highly expressive,



2. Text Encoder

→ Transformer architecture + Linear





3. Image Encoder

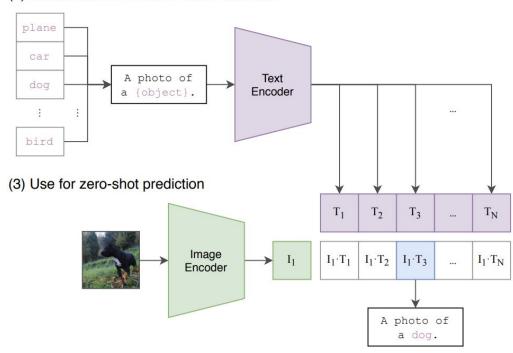
Candidate 1: ResNet50 with attention-pooling

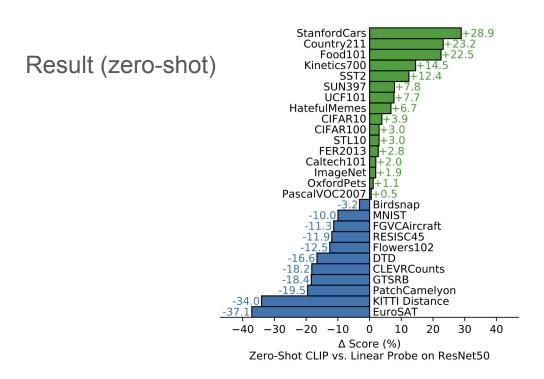
3 sizes: 4x, 16x, and 64x

Candidate 2: ViT (2020)

3 sizes: ViT-B/32, ViT-B/16, ViT-L/14

(2) Create dataset classifier from label text





Result (both linear probe)

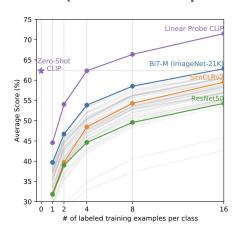
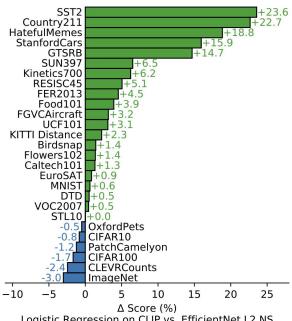


Figure 6. Zero-shot CLIP outperforms few-shot linear probes. Zero-shot CLIP matches the average performance of a 4-shot linear classifier trained on the same feature space and nearly matches the best results of a 16-shot linear classifier across publicly available models. For both BiT-M and SimCLRv2, the best performing model is highlighted. Light gray lines are other models in the eval suite. The 20 datasets with at least 16 examples per class were used in this analysis.



Logistic Regression on CLIP vs. EfficientNet L2 NS

Figure 11. CLIP's features outperform the features of the best ImageNet model on a wide variety of datasets. Fitting a linear classifier on CLIP's features outperforms using the Noisy Student EfficientNet-L2 on 21 out of 27 datasets.

Limitations:

- Not yet beats SOTAs with just baseline model
- Bad at fine-grained classification tasks, abstract and systematic tasks
- Learning social bias from dataset
- Out-of-distribution problem
- No available dataset for image captioning at the time

Personal critics:

- Bag-of-words and Winogrounds (<u>link</u>)
- Modality overpower

Flamingo - Multimodal Few-shot Learning

General Info:

- DeepMind NeurlPS 2022
- Multimodal
 - o Image + Video (partial) ↔ Text
 - Frozen modules
- Designed for few-shot learning tasks

Flamingo - Multimodal Few-shot Learning

pretrained and frozen
Using contrastive text-image data
NormalizerFree ResNet (NFNet) - F6

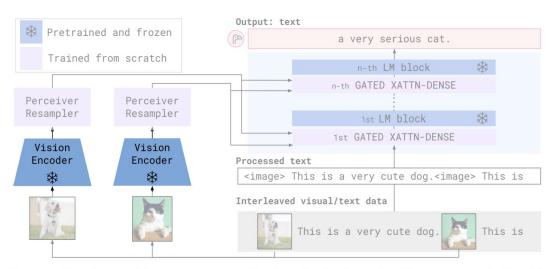


Figure 3: **Flamingo architecture overview.** Flamingo is a family of visual language models (VLMs) that take as input visual data interleaved with text and produce free-form text as output.

Flamingo - Multimodal Few-shot Learning

- pretrained and frozen:
 Transformer decoder
- From scratch: gated cross-attention dense - with tanh(a) gating mechanism

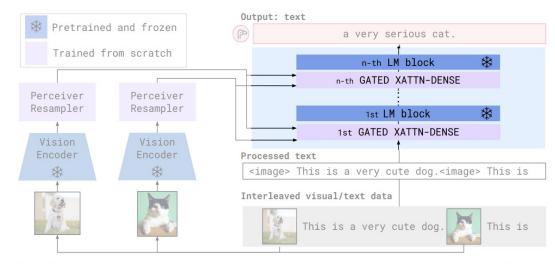


Figure 3: **Flamingo architecture overview.** Flamingo is a family of visual language models (VLMs) that take as input visual data interleaved with text and produce free-form text as output.

Method	FT	Shot	OKVQA (I)	VQAv2 (I)	(I) 0000	MSVDQA (V)	VATEX (V)	VizWiz (I)	Flick30K (I)	MSRVTTQA (V)	iVQA (V)	YouCook2 (V)	STAR (V)	VisDial (I)	TextVQA (I)	NextQA (I)	HatefulMemes (I)	RareAct (V)
Zero/Few shot SOTA	Х		[34] 43.3	[114] 38.2	[124] 32.2	[58] 35.2		1-	-	[58] 19.2	[135] 12.2	-	[143] 39.4	[79] 11.6	-	3 -	[85] 66.1	[85] 40.7
	.,	(X)	(16)	(4)	(0)	(0)	40.4	20.0		(0)	(0)		(0)	(0)	20.1	21.2	(0)	(0)
EI : 0D	X	0	41.2	49.2	73.0	27.5	40.1	28.9	60.6	11.0	32.7	55.8	39.6	46.1	30.1	21.3	53.7	58.4
Flamingo-3B	Č	4	43.3	53.2	85.0	33.0	50.0	34.0	72.0	14.9	35.7	64.6	41.3	47.3	32.7	22.4	53.6	-
-	<u>.</u>	32	45.9	57.1	99.0	42.6	59.2	45.5	71.2	25.6	37.7	76.7	41.6	47.3	30.6	26.1	56.3	-
E1 : 0D	Č	0	44.7	51.8	79.4	30.2	39.5	28.8	61.5	13.7	35.2	55.0	41.8	48.0	31.8	23.0	57.0	57.9
Flamingo-9B	Š	4	49.3	56.3	93.1	36.2	51.7	34.9	72.6	18.2	37.7	70.8	42.8	50.4	33.6	24.7	62.7	-
	Х	32	51.0	60.4	106.3	47.2	57.4	44.0	72.8	29.4	40.7	77.3	41.2	50.4	32.6	28.4	63.5	-
	X	0	50.6	56.3	84.3	35.6	46.7	31.6	67.2	17.4	40.7	60.1	39.7	52.0	35.0	26.7	46.4	60.8
Flamingo	X	4	57.4	63.1	103.2	41.7	56.0	39.6	75.1	23.9	44.1	74.5	42.4	55.6	36.5	30.8	68.6	-
	Х	32	<u>57.8</u>	67.6	113.8	52.3	65.1	49.8	<u>75.4</u>	31.0	<u>45.3</u>	86.8	42.2	55.6	37.9	33.5	70.0	-
Pretrained			54.4	80.2	143.3	47.9	76.3	57.2	67.4	46.8	35.4	138.7	36.7	75.2	54.7	25.2	79.1	
FT SOTA	V		[34]	[140]	[124]	[28]	[153]	[65]	[150]	[51]	[135]	[132]	[128]	[79]	[137]	[129]	[62]	-
11301A		(X)	(10K)	(444K)	(500K)	(27K)	(500K)	(20K)	(30K)	(130K)	(6K)	(10K)	(46K)	(123K)	(20K)	(38K)	(9K)	

Table 1: Comparison to the state of the art. A *single* Flamingo model reaches the state of the art

Method	VQAV2		COCO	VATEX	VizWiz		MSRVTTQA	VisDial		YouCook2	TextVQA		HatefulMemes
	test-dev test-s		test	test	test-dev	test-std	test	valid	test-std	valid	valid	test-std	test seen
₹ 32 shots	67.6	-	113.8	65.1	49.8	-	31.0	56.8	-	86.8	36.0	-	70.0
Fine-tuned	82.0	82.1	138.1	84.2	<u>65.7</u>	65.4	47.4	61.8	59.7	118.6	57.1	54.1	<u>86.6</u>
SatA	81.3 [†]	81.3 [†]	149.6 [†]	81.4^{\dagger}	57.2 [†]	60.6^{\dagger}	46.8	75.2	75.4 [†]	138.7	54.7	73.7	84.6 [†]
SotA	[133]	[133]	[119]	[153]	[65]	[65]	[51]	[79]	[123]	[132]	[137]	[84]	[152]

Table 2: Comparison to SotA when fine-tuning *Flamingo*. We fine-tune *Flamingo* on all nine tasks where *Flamingo* does not achieve SotA with few-shot learning. *Flamingo* sets a new SotA on five of them, outperforming methods (marked with †) that use tricks such as model ensembling or domain-specific metric optimisation (e.g., CIDEr optimisation).

(i)	Training data	All data	w/o Video-Text pairs w/o Image-Text pairs Image-Text pairs→ LAION w/o M3W	3.2B 3.2B 3.2B 3.2B	1.42s 0.95s 1.74s 1.02s	84.2 66.3 79.5 54.1	43.0 39.2 41.4 36.5	53.9 51.6 53.5 52.7	34.5 32.0 33.9 31.4	46.0 41.6 47.6 23.5	67.3 60.9 66.4 53.4
(ii)	Optimisation	Accumulation	Round Robin	3.2B	1.68s	76.1	39.8	52.1	33.2	40.8	62.9
(iii)	Tanh gating	✓	Х	3.2B	1.74s	78.4	40.5	52.9	35.9	47.5	66.5
(iv)	Cross-attention architecture	GATED XATTN-DENSE	VANILLA XATTN GRAFTING	2.4B 3.3B	1.16s 1.74s	80.6 79.2	41.5 36.1	53.4 50.8	32.9 32.2	50.7 47.8	66.9 63.1
(v)	Cross-attention frequency	Every	Single in middle Every 4th Every 2nd	2.0B 2.3B 2.6B	0.87s 1.02s 1.24s	71.5 82.3 83.7	38.1 42.7 41.0	50.2 55.1 55.8	29.1 34.6 34.5	42.3 50.8 49.7	59.8 68.8 68.2
(vi)	Resampler	Perceiver	MLP Transformer	3.2B 3.2B	1.85s 1.81s	78.6 83.2	42.2 41.7	54.7 55.6	35.2 31.5	44.7 48.3	66.6 66.7
(vii)	Vision encoder	NFNet-F6	CLIP ViT-L/14 NFNet-F0	3.1B 2.9B	1.58s 1.45s	76.5 73.8	41.6 40.5	53.4 52.8	33.2 31.1	44.5 42.9	64.9 62.7
(viii)	Franzing I M	/	X (random init)	3.2B	2.42s	74.8	31.5	45.6	26.9	50.1	57.8

3.2B

Table 3: **Ablation studies.** Each row should be compared to the baseline Flamingo run (top row).

2.42s

81.2

Param.

count ↓

3.2B

COCO

CIDEr[↑]

86.5

Step

time \

1.74s

OKVOA

top1↑

42.1

33.7

VQAv2

top1↑

55.8

47.4

MSVDQA

top1↑

36.3

31.0

VATEX

CIDEr↑

53.4

53.9

Overall

score[†]

70.7

62.7

Step time measures the time spent to perform gradient updates on all training datasets.

Flamingo-3B

original value

Flamingo-3B model

Changed

X (pretrained)

value

Ablated

setting

(viii)

Freezing LM