

Journal Club Presentation

Jillur Rahman Saurav

Date: 09-11-2024

Health Data Science Lab Computer Science & Engineering University of Texas at Arlington, USA

PromptMRG: Diagnosis-Driven Prompts for Medical Report Generation

Authors: Haibo Jin, Haoxuan Che, Yi Lin, and Hao Chen

Department of Computer Science and Engineering, Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology, Hong Kong, China

Title: PromptMRG: Diagnosis-Driven Prompts for Medical Report Generation

	Catego	ies > Engineering & Computer Science > Artificial Intelligence -		
Authors: Haibo Jin,]		Publication	<u>h5-index</u>	<u>h5-median</u>
	1.	Neural Information Processing Systems	<u>337</u>	614
Department of Comp	2.	International Conference on Learning Representations	<u>304</u>	584
The Hong Kong Uni	3.	International Conference on Machine Learning	<u>268</u>	424
Kong, China	4.	AAAI Conference on Artificial Intelligence	<u>220</u>	341

Ground-truth: There is opacity to suggest pneumonia.

Ground-truth: There is opacity to suggest pneumonia.

Prediction 1: There is no opacity to suggest pneumonia.

Ground-truth: There is opacity to suggest pneumonia.

Prediction 1: There is no opacity to suggest pneumonia.

Prediction 2: There are right lower lobe opacities concerning for pneumonia.

Ground-truth: There is opacity to suggest pneumonia.

Prediction 1: There is no opacity

to suggest pneumonia.

℅

Prediction 2: There are right lower lobe opacities concerning for pneumonia.

Diagnosis-Driven Prompts for Medical Report Generation

Dataset

• MIMIC-CXR

• Training Set: 270,790 • Validation Set: 2130 • Test Set: 3858

• IU X-Ray o Test Set: 2955 EXAMINATION: CHEST (PA AND LAT) ____ year old woman with ?pleural effusion // ?pleural effusion INDICATION: TECHNIQUE: Chest PA and lateral COMPARISON: FINDINGS:

Cardiac size cannot be evaluated. Large left pleural effusion is new. Small right effusion is new. The upper lungs are clear. Right lower lobe opacities are better seen in prior CT. There is no pneumothorax. There are mild degenerative changes in the thoracic spine

IMPRESSION:

Large left pleural effusion

Johnson et al. (2019). MIMIC-CXR: A de-identified chest Xray database. Scientific Data, 6(1), 317.

Figure 2: The overall framework of PromptMRG, which mainly consists of an image encoder and a text decoder for report generation. The diagnosis-driven prompts module is proposed to guide the decoder for diagnostically correct reports. The cross-modal feature enhancement is designed to enhance the feature for disease classification via a report database. The self-adaptive disease-balanced learning is further proposed to handle the imbalanced performance among diseases.

Encoder Decoder Architecture

CLIP

CLIP

Results

Dataset	Model	Year		CE Metrics			NLG I	Metrics	
Dutuset		i cui	Precision	Recall	F1	BLEU-1	BLEU-4	METEOR	ROUGE-L
	R2Gen	2020	0.333	0.273	0.276	0.353	0.103	0.142	0.277
	M2TR	2021	0.240	0.428	0.308	0.378	0.107	0.145	0.272
	MKSG	2022	0.458	0.348	0.371	0.363	0.115	-	0.284
	CliBert	2022	0.397	0.435	0.415	0.383	0.106	0.144	0.275
	CVT2Dis.*	2022	0.356	0.412	0.384	0.392	0.124	0.153	0.285
MIMIC	M2KT	2023	0.420	0.339	0.352	0.386	0.111	-	0.274
	METrans.	2023	0.364	0.309	0.311	0.386	0.124	0.152	0.291
	KiUT	2023	0.371	0.318	0.321	0.393	0.113	0.160	0.285
	DCL	2023	0.471	0.352	0.373	-	0.109	0.150	0.284
	RGRG*#	2023	0.461	0.475	0.447	0.373	0.126	0.168	0.264
	Ours	-	0.501	0.509	0.476	0.398	0.112	0.157	0.268
	R2Gen [†]	2020	0.141	0.136	0.136	0.325	0.059	0.131	0.253
	CVT2Dis.*†	2022	0.174	0.172	0.168	0.383	0.082	0.147	0.277
IU X-Rav	$M2KT^{\dagger}$	2023	0.153	0.145	0.145	0.371	0.078	0.153	0.261
10 11 1ug	DCL^{\dagger}	2023	0.168	0.167	0.162	0.354	0.074	0.152	0.267
	RGRG* [†]	2023	0.183	0.187	0.180	0.266	0.063	0.146	0.180
	Ours	-	0.213	0.229	0.211	0.401	0.098	0.160	0.281

Table 1: Comparison with SOTA MRG methods on MIMIC-CXR and IU X-Ray. * indicates the used image size is larger than 224. \dagger indicates the performance evaluated by us. # indicates the usage of a different data split. The best results are in **bold**.

Results

DDP	ADL	CFE	SDL		CE Metrics			NLG N	Metrics	
				Precision	Recall	F1	BLEU-1	BLEU-4	METEOR	ROUGE-L
×	×	×	×	0.430	0.368	0.370	0.397	0.116	0.158	0.272
~	×	×	×	0.487	0.461	0.444	0.391	0.106	0.151	0.261
~	~	×	×	0.496	0.466	0.451	0.393	0.106	0.152	0.261
~	~	~	×	0.514	0.475	0.464	0.394	0.108	0.152	0.263
~	~	×	~	0.489	0.500	0.468	0.397	0.111	0.155	0.264
~	~	~	~	0.501	0.509	0.476	0.398	0.112	0.157	0.268

Table 2: Ablation study of each module on MIMIC test set.

Results

some atelectasis at the left mid to lower portion of
--

Figure 5: Qualitative examples of the baseline and the proposed method. Blue font indicates consistent content with the groundtruth while red font indicates incorrect content. See more examples in Appendix.

Implementation

- Encoder: ResNet-101 (ImageNet)
- Decoder: Bert-base
- Optimizer: AdamW, weight decay 0.05
- Learning Rate: 5e-5, cosine schedule
- Epochs: 10, Batch Size: 16, Image Size: 224
- Framework: PyTorch 2.0
- Hardware: RTX 3090, ~24 hours

Key Takeaways

- Identify limitations of existing models
- Leverage pretrained models for each modality
- Experiment with prompt engineering
- Perform ablation studies
- Validate with different approaches